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Systematic smoothing of constrained interface profiles
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We introduce a family of crossing constraints for defining an interface Hamiltonian that yield order-
parameter profiles of any desired smoothness. The usual local crossing criterion is generalized to include
integral constraints. Application to short-range critical wetting allows us to demonstrate that fundamental
predictions from the local crossing criterion are robust under a change of constraint. Further, interface Hamil-
tonians derived from any member of the family are shown to reproduce exact results for order-parameter
correlation functions[S1063-651X97)02711-9
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For critical wetting transitions in systems with short-rangefective Hamiltonian(1). First, the binding potentialVv for

forces the upper critical dimension @s=3 [1]. At this di-  largel should have the expansion
mension renormalization effects can be important and indeed _
striking nonuniversal behavior has been predict&]. W(I;T,h)=hl+w; (e +w,(he 2 +--- | (3)

Renormalization-group studies of wetting rely on the intro-
duction of an effective interfacial Hamiltonian, which is a where the reduced ordering fieldhoh and «= 1/¢ 4 is the
functional of the thickness$ of the adsorbed layer. This inverse correlation length of the wetting phase. The coeffi-
Hamiltonian typically takes the forri8,4] cients of the exponentially decaying termsg,(1) were found
to be polynomials in of ordern rather than being inde-
pendent as had previously been believed. Second, the stiff-
ness coefficientt,,, in Eqg. (1) should be replaced by a
position-dependent stiffne$s(1) with an expansion similar
whereW(1) is the binding potential anBl.. is the stiffness or to Eq. (3). Although the presence of a position-dependent
surface tension of a free interface. This Hamiltonian is decontribution to the stiffness coefficient is also visible[4],
rived from an underlying noncritical bulk order-parameterthis was not utilized at the time.
theory, typically a Landau-Ginzburg-Wilson Hamiltonian of ~ The scheme that FJ prescribe for derividg|] relies on
the form introducing a suitable constraint in order to define the collec-

tive coordinatd. In particular they impose the “local’cross-
Azt ¢1(m1)] @ ing criterionm(y,z=1(y))=m* Vy to define | wherem* is

a fixed reference level. The constraint consistfixfg | and

then minimizing the free energy exactly. In a suitably gener-
where m;=m(y,z=0) is the surface order parameter or alized form effective Hamiltonians derived using this crite-
“wall value.”The bulk free-energy density(m) is assumed rion have been shown to correctly rederive the correlation
to take the form¢(m;T,h) = ¢o(m;T) —hm, where¢, has  function structure associated with the underlying Landau-
two equal minima andh is the bulk ordering field. Ah=0  Ginzburg-Wilson model and provide quantitative predictions
two phasesg (corresponding to down spins, say, in a mag-that are in agreement with Monte Carlo simulations of wet-
netic notation and 8 (up sping, coexist. With this notation ting [6,7]. However, as noted by FJ, the imposition of the
we denote the minima op by m,.. andmyg,.. We assume |ocal constraint naturally leads to a discontinuity in the first
that the wall in the plane=0 is wet by thes phase at some derivative of the corresponding constrained magnetization
subcritical temperatur@,y so that forT>T,y the a3 inter-  profile, mz say, at the position whemaz =m*,
face is delocalized at a macroscopic distance from the wall. A method of smoothing this discontinuity within the
The surface potentiap; is modeled by the truncated expan- crossing criterion was suggested but not carried out in view
sion ¢(m;) = —h;m; —gm/2, whereh, is the surface field of its computational complexity5]. Instead, other criteria
(h,>0 for our analysis and g<<0 is the surface enhance- were explored. A natural alternative definition of the wetting
ment. layer thickness is thadsorptionof phaseB on the wall.

The derivation of Eq(1) can be achieved by first deter- Surprisingly, FJ showed that the integral constraint on the

mining the order-parameter profile with a givéixed) wall adsorption is insoluble and were led to consider other non-
value. The interface location is given implicitly by, for ex- local constraints. A different approach was considered by
ample, defining as the position where this profile crossesBukmanet al, who allowed magnetization profiles with a
some reference value. Clearlydepends on the wall value so discontinuoussecondderivative atz=z and imposedn(2)
that exploring the full range of wall values allows the deri- =m,.. [8]. Further analysis aimed at minimizing the result-
vation of an effective Hamiltoniaf3,4]. Recently, this ap- ing free energy by varyingn=m(z) for fixed adsorption
proach was criticized by Fisher and JiR) [5], who have [9]. However, this procedure leads to a trivial minimum in-
reanalyzed the problem, finding two modifications to the ef-dependent of.
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Here we propose a soluble constraint that naturally leads
to smoother profiles, within the crossing criterion frame-
work. To define the constraint we first choose some fixed
magnetizatiorm®. We are primarily interested in surfaces of
fixed magnetization that lie in the interface, typified i
=0. Second, we definein the same way that FJ do. How-
ever, we do not impose the constraint of fidecbut leavel
to be determined self-consistently by general a different
constraint. Thifreedom of choice of constraiig a key tool
hitherto not utilized. The constraints we impose are of the
form, with g a non-negative integer,

-0.05
2y)[ m(y,z) —mX]9
f % dz=F(Q)(y) (4) -0.10 T T
0 Mg =M 0 2 4 112
Z/(2K)
for some fixedl'®. The upper limitz(y) is defined by the
crossing criterion so that, for fixeg FIG. 1. Comparison of constrained order-parameter profiles
m(z) for g=0, 1, 10, ande. We have takemmg,,= —m,,,=0.2,
z=m {(m*%). (5 ¢=(m-mg))(m-m,.)? h;~0.68/2Km3,, and g=0. For

clarity, the value of the constraifit® is chosen so that for each
We thus obtain a family of constraints parametrized by thehe same crossing poirt=42K is obtained. The profile foq
exponent. =0 displays a discontinuous derivative mt=m*=0. In general,
We define the collective coordinaltéy; (D) as the value meCY, with a discontinuous o+ 1)st derivative atz=I. The
of z(y) that minimizes the free energy subject to the con-boundary condition at=0 is satisfied for alfinite g (see the tejt
straint(4). First consideq=0. In this case we see from Eq. For g— the profile becomes coincident with the functior(z)
(4) that our procedure simply corresponds to fixiagy), = Mae tanfimg.y2/K(z—1)], which solves the fixed-wall-value
which then equal$(y). Consequently, we recover tihecal ~ Problem.
crossing criterion of FJ. Fog=1 our constraint is akin to
theintegral constraint on the adsorptiowhile for g— o we
reproduce features of the fixed-wall constraint as employed
in [3,4] (see furthey.
~ For brevity we restrict our attention to planar magnetiza-e continuousat z=1. This corresponds to a Weierstrass-
tion profiles, m,(z,T'¥) say, which for convenience we Ergmann conditiori9]. Utilizing the continuity ofm(z) and
write asm(z). These profiles are associated with a fifé®  G(z) at z=1 identifies the integration constat=0. Thus
and we now describe how to obtain the profile that solves thgye observe from Eq(7) that the constrained profile will
free-energy minimization exactly. For later use we note thahaye a continuous first derivative fqe=1, in contrast to the
after minimization, each choide!¥ corresponds to a unique g=0 criterion. It follows from Eq.(6) and its derivatives
Val.ue of | El(q) We dOInOt further consider the cages 0, that, providedf) is Suitab|y Smooth‘;n(z) e CY. That iS,m(Z)
which has been extensively treated &}. It follows from Eq.  and its firstq derivatives are continuous everywhere, but the
(4) that the Euler-Lagrange equation found from minimizing (q+ 1)st derivative has a jump a=I. Consequently, the
the free energy subject to the generalized constraintis  criterion we have introduced provides a mechanism to
2 10— 1 smooth, in a controlled manner, the kink enforced by the
d“m [m(z) —m*]4 . L
K ——==¢'(m+0(-2\q ————7—, (6) localcrossing criterion.
dz? [Mge—m™] Furthermore, the— oo limit of the family is reminiscent
of, but not identical to, the fixeds, criterion discussed pre-
viously [3,4]. To see this consider some fixed wall value,
M;<mg., say. One can derive the corresponding magnetiza-
tion profile simply by requiring thatm(z=0)=M; and

m(z)—mX]d

— mX
mBmm

’

K (dm)\?
G2=75 E) —A¢p(m(2))—\

where 0 is the Heaviside step function\ is a Lagrange
multiplier, and primes always denote differentiation with re-
spect to argument. The first integral of EE) is

K {dm)?2 m(z) —mX]d m(z—)—m,... The resulting profileV (z) crossesm* at
5 (E) =Adp(m)+06(l —z)()\ e——— E), some locatiorl. Now for a givenq we choose in our con-
pee straint(4) precisely thd"(@ that ensure§¥=1. Forz>| the

profiles m(z;T'9) and M(z) are identical, while for &z
where A ¢(m)=¢(m)— ¢(m,..) and E is an integration <I one can consider a Taylor expansionnafz;I"(?) about
constant. Note that there is no integration constant in thé. From the discussion above we see that this series will
regionz>1 by virtue of the bulk conditiom(z) —m,,, for  differ from that ofM(z) only afterq+1 terms. Thus, in the
Z—0, limit g—oo the regular parts of the two functions have iden-

Extremization with respect to variations of the wall value tical Taylor series and we verified numericallyee Fig. 1
m, leads to the familiaboundary condition Kdmv/dz)|,—, that they coincide at all points including at the wall. How-
=—h;—gm,. It is important to consider also the variation ever,m(z;I'?) andM(z) have different first derivativeat
of the crossing poink, which leads to the extremality con- the wall since, in generaM (z) does not satisfy the bound-
dition that the quantityG(z), defined by ary condition. Thus thg—« limit leads to profiles that are
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singular atz=0, but smoothly converge to those obtainedwhile 7=(h;+gmg..)/(Kk—g)*xT—-Ty and 0<G=(g

with the fixed-wall-value constraint for a#t>0. +Kk)/(g—Kk)<1. These results agree precisely with those
Concerning the binding potentiaV/(l), we remark that found forq=0 in this model up to terms a®(h,7?). The

the constraint of fixed (@ naturally leads to a potential as a key feature is thatfor h—0—) the leading termw,, van-

function of this variable, i.e W(I'™). This potential gives ishes at mean-field wetting criticality, while,, remains

the free-energy minimum for fixeB(®. Since the exact so- Positive. We also note the presence of nonpure exponential

lution of the free-energy minimization provides a unique contributions inW(l) already at the level of the DP approxi-

value of| for a given value of"®, the potentiaM/(I'@) ~ mation. , - , . _
leads to an equivalent potentll®(1). Note that this func- For the stiffness coefficient we find a similar expansion

tion does not give the free-energy minimum for fixedex- © m
cept forq=0. In fact, for a given, the valuesW(¥(l) in- SH=34+ > S s (xl)e ™, (12)
crease asg| is increased(For simplicity, we will henceforth m=1n=0

write W in place ofW(®.) _ . _ o
One application of our smoothing procedure is to test theVhereX.. is as defined earlier. The coefficierss, are
fundamental predictions of thg=0 criterion. Any physics _
that is not common with, for example, the choige 1 can- S10(T.h.Ny1,9)=2Kkmg..7+O(h),
not be considered robust but rather an artifact of imposing
the constraint. First note that because all constraints in the
family employ the crossing criteriom(z=1)=m*, the ex-
pressions of FJ fow/(l) andX(l) are valid for the effective
Hamiltonian derived with anyq. In particular, up to
[-independent terms

(13
S20(T.h,hy,9) =KkmZ,(G?+10G—1)/2+O(h, 7),

321:_2KKgméoc+o(h,T), 311:0, SZZZO.

Again these results are in close agreement with dke0
analysis, with the two leading ternsg, and s,; matching
identically up toO(h). Of particular importance is the fact
dz+ ¢1(my) (8 that at critical wetting the dominant contribution arises
throughs,;, which is negative and of order unity. This term
leads to the so-called stiffness instability mechanism through

(K [9m)?
W(l)zf (5<—) +A¢p(m)

0 0z

and which, under renormalization, @are critical wetting tran-
5 sition may be driven weakly first ord¢b]. That is, under
E(I)=Kjw ‘9_m) dz 9 renormalization the presence of a term@fle 2¥') in the

o\ dl ’ stiffness expansion is found to destabilize the critical wetting

transition. A recent nonlinear renormalization-group study
where in each case only planar profiles are involved. Explicistrongly suggests that in three dimensions the transiton
expressions for the binding potential and stiffness coefficiendiriven weakly first order for values of the stiffness strength
can be calculated within the double-parab¢zP) model  Sy: predicted from theg=0 analysig10]. The above obser-
used by FJ. Specifically, we consider the casel since the Vvation thats,; remains unchanged far=1 implies that the
DP model automatically forces a singularity in the secondsame prediction of a fluctuation-induced first-order transition
derivative of the magnetization profile, due to a discontinuityiS appropriate with this criterion.
in ¢o(m) [see Eq.(6)] countering the advantage of extra More generally, the existence of nonpure exponential con-
smoothness associated with larggr We further choose tributions to the stiffness has been shown to be a vital ingre-
m*=0, allowing a direct comparison with existing=0 re-  dient in.obtaining a thermodynamically.consistent theory of
sults. The DP model, which assumes thig{m) can be rep- correlauon.funcuons[ll,G]. That analysis was be}sgd upon
resented in a piecewise parabolic fashion, allows the calcifh®g=0 criterion, but from the above we may anticipate that
lation of (plana) magnetization profilesn(z;1) by solving  identical thermodynamically consistent results would be
Eq. (6) in the regionsz>| andz<|. Expressions fokV(l) found using any member of our family of constraints. We
and 3 (1) are found from substitutingn(z;1) into Eqs.(8)  conclude by showing that this is indeed the case.

and(9), respectively. An important success of thg=0 criterion has been the
Here we present a summary of our results in the limitaPility to rederive known mean-field expressions for the
| —o0. ForW(l) we find order-parameter correlation function G(rq,r,)
=(m(ry)m(r,)).. From translational invariance this de-
_o® m pends only on the normal distances and z, and relative
W(hH=hl+ > > Wpy(ch)"e ™, (100  parallel separationy,,. Consequently, it is convenient to
m=1n=0 define the transverse structure factor and its moment expan-

_ sion
where—hoh. The leading-order coefficients,,, are _ . _
G(21,22;Q) = Jdy1£'W12G(r 1,1 5) = =7 1Gan(Z1,22) Q2"

(11) For the discussion presented here we restrict our attention to

WZO(T,h,hl,g)zKKngBOCJrO(h,TZ), the zeroth momengy(z,z). The mean-field expression for
Go(zo,z9) can be derived from an interfacial Hamiltonian

wy;=0(h), w,;=0(h,7%), wy=0, defined through & =0 crossing constraint provided the ref-

wo(T,h,hy,g)=2K kmg,.7+O(h),
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erence valuen® is chosen such thah*=m(z=z,), where  consistently. This constraint need not be that of fixingut
m(z) is the equilibrium magnetization profile found from may be nonlocal. This freedom allows us to obtain a one-
minimizing the bulk Hamiltonian with no constraint dn  parameter family of soluble constraints.

[11]. The result is As an application we have verified that the stiffness insta-
r( 2 bility mechanism and the correlation function reconstruction
~ . m’(z=z, i i i ; i
X — _ scheme, previously derived using one particular constraint
20,20;M =M(Z0))= % » 14 )
Go(Zo.20 (20)=y (I=24;m%) (14 (q=0), are robust under a change of constraint from local to
integral type.

where we have highlighted the implicit* dependence. The  The family of constraints provides a scheme in which the
fundamental reason why gt=0 this expression recovers the |qcal constraint of F Jq=0), the integral constrainelated
known result is that for the choice ofinvolved (=2z0) the g fixed adsorption¢=1), and the constraimeminiscent of
planar ‘magnetization profile is identically the equilibrium tne traditional approach of Bzi et al. and Lipowskyet al.
profile m (which, recall, is everywhere smogth (g—) are brought together. From a laboratory viewpoint it
For q>0 a similar derivation leading to the formal ex- is satisfactory that the adsorption is now involved in the
pression(14) holds. Indeed, if we denote the equilibrium framework of a soluble constraint. It is interesting that a
position of the surface of fixed magnetizatior® by | and  preference for working witrdifferentiable profiles can be
define f‘:f{)[ﬁ'](z) - mX]q/[me_ m*]9dz, then imposing Met by the use of this constraing € 1): We remark that for
the choicel@=T" must, by consistency, yield the equilib- =1 the approach of Bukmaat al.[8] is reprgduced;‘orthe
rium profile, i.e.,mw(z;lv“)= m(z). As a result, provided we special choicen”=m,, [12]. If, with this choice ofim”, we

again make the local choice for the reference magnetizatiowrtrr]e””n\?“ra ttr?k?nthel “S?lz(y):t(f :Etthm? flir)ltedgreg mrE?i(Ar?’

m*=m(z,), the contribution of the binding potential to € recover the nsoluble constraint of fixed adsorption.

e . v d dent . In fact. | h In practice, for smoothing the singularity in the interface
0(Z0.20) is only dependen upomq(z). ntact, In €ach Cas€  4ising from the local crossing criteriap=0 it is sufficient

the appropriate constrained profile that is used to calculat

fo work with g=1 or 2 since already foq=1 the profile
the zeroth moment is exactly the equilibrium profile. Since
the definition(8) for the binding potential has no explidit appears smooth to the eye. On the other hand, large values of

. " g are also interesting because they can be employed to
dept?ndxen'cg it follows that the local culrvatuw (I smooth theg= singularity at the wall. Therefore, the high-
=2p;m") is independent off. Hencegy(2o,2) is correctly o members of the family provide a means of reconciling the
derived via the interface Hamiltonian approaefith any  rqfiles of[3,4] with the boundary condition at the wall.
choice of g Similar considerations apply to the higher mo-

ments ofG. We thank G. Backx, R. Blossey, and A. O. Parry for

In conclusion, we have shown that the use of integraldiscussions and M. E. Fisher for a critical reading of the
constraints within the crossing criteriom(z=1)=m* allows  manuscript. This research was supported by the K. U. Leu-
us to obtain order-parameter profiles of any desired smooth/en Research Fun@rant No. F/96/7% the Fund for Scien-
ness. The key consideration is to split the crossing criteriotific Research of FlanderdWO), the Inter-University At-
into two steps. The first is theefinitionof |, given fixedm*. traction Poles, and the Concerted Action Research
The second is thehoice of constrainthat determine$ self-  ProgrammeGOA).
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