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Systematic smoothing of constrained interface profiles
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~Received 18 July 1997!

We introduce a family of crossing constraints for defining an interface Hamiltonian that yield order-
parameter profiles of any desired smoothness. The usual local crossing criterion is generalized to include
integral constraints. Application to short-range critical wetting allows us to demonstrate that fundamental
predictions from the local crossing criterion are robust under a change of constraint. Further, interface Hamil-
tonians derived from any member of the family are shown to reproduce exact results for order-parameter
correlation functions.@S1063-651X~97!02711-6#

PACS number~s!: 68.45.Gd, 82.65.Dp, 05.70.Fh, 64.60.Fr
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For critical wetting transitions in systems with short-ran
forces the upper critical dimension isd53 @1#. At this di-
mension renormalization effects can be important and ind
striking nonuniversal behavior has been predicted@2#.
Renormalization-group studies of wetting rely on the int
duction of an effective interfacial Hamiltonian, which is
functional of the thicknessl of the adsorbed layer. Thi
Hamiltonian typically takes the form@3,4#

HI@ l #5E dyH S`

2
~“ l !21W~ l !J , ~1!

whereW( l ) is the binding potential andS` is the stiffness or
surface tension of a free interface. This Hamiltonian is
rived from an underlying noncritical bulk order-parame
theory, typically a Landau-Ginzburg-Wilson Hamiltonian
the form

H@m#5E dyH FK

2
~“m!21f~m!Gdz1f1~m1!J , ~2!

where m1[m(y,z50) is the surface order parameter
‘‘wall value.’’The bulk free-energy densityf(m) is assumed
to take the formf(m;T,h)5f0(m;T)2hm, wheref0 has
two equal minima andh is the bulk ordering field. Ath50
two phases,a ~corresponding to down spins, say, in a ma
netic notation! andb ~up spins!, coexist. With this notation
we denote the minima off by ma` and mb` . We assume
that the wall in the planez50 is wet by theb phase at some
subcritical temperatureTW so that forT.TW the ab inter-
face is delocalized at a macroscopic distance from the w
The surface potentialf1 is modeled by the truncated expa
sionf1(m1)52h1m12gm1

2/2, whereh1 is the surface field
~h1.0 for our analysis! and g,0 is the surface enhance
ment.

The derivation of Eq.~1! can be achieved by first dete
mining the order-parameter profile with a given~fixed! wall
value. The interface location is given implicitly by, for ex
ample, definingl as the position where this profile cross
some reference value. Clearly,l depends on the wall value s
that exploring the full range of wall values allows the de
vation of an effective Hamiltonian@3,4#. Recently, this ap-
proach was criticized by Fisher and Jin~FJ! @5#, who have
reanalyzed the problem, finding two modifications to the
561063-651X/97/56~5!/5734~4!/$10.00
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fective Hamiltonian~1!. First, the binding potentialW for
large l should have the expansion

W~ l ;T,h!5h̄l 1w1~ l !e2k l1w2~ l !e22k l1••• , ~3!

where the reduced ordering field2h̄}h andk[1/jb is the
inverse correlation length of the wetting phase. The coe
cients of the exponentially decaying terms,wn( l ) were found
to be polynomials inl of order n rather than beingl inde-
pendent as had previously been believed. Second, the
ness coefficientS` in Eq. ~1! should be replaced by a
position-dependent stiffnessS( l ) with an expansion similar
to Eq. ~3!. Although the presence of a position-depende
contribution to the stiffness coefficient is also visible in@4#,
this was not utilized at the time.

The scheme that FJ prescribe for derivingHI@ l # relies on
introducing a suitable constraint in order to define the coll
tive coordinatel . In particular they impose the ‘‘local’’cross
ing criterionm„y,z5 l (y)…5mX ;y to define l, wheremX is
a fixed reference level. The constraint consists offixing l and
then minimizing the free energy exactly. In a suitably gen
alized form effective Hamiltonians derived using this crit
rion have been shown to correctly rederive the correlat
function structure associated with the underlying Land
Ginzburg-Wilson model and provide quantitative predictio
that are in agreement with Monte Carlo simulations of w
ting @6,7#. However, as noted by FJ, the imposition of th
local constraint naturally leads to a discontinuity in the fi
derivative of the corresponding constrained magnetiza
profile, mJ say, at the position wheremJ5mX.

A method of smoothing this discontinuity within th
crossing criterion was suggested but not carried out in v
of its computational complexity@5#. Instead, other criteria
were explored. A natural alternative definition of the wetti
layer thickness is theadsorptionof phaseb on the wall.
Surprisingly, FJ showed that the integral constraint on
adsorption is insoluble and were led to consider other n
local constraints. A different approach was considered
Bukman et al., who allowed magnetization profiles with
discontinuoussecondderivative atz5 ẑ and imposedm( ẑ)
5ma` @8#. Further analysis aimed at minimizing the resu
ing free energy by varyingms[m( ẑ) for fixed adsorption
@9#. However, this procedure leads to a trivial minimum i
dependent ofl .
5734 © 1997 The American Physical Society
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56 5735SYSTEMATIC SMOOTHING OF CONSTRAINED . . .
Here we propose a soluble constraint that naturally le
to smoother profiles, within the crossing criterion fram
work. To define the constraint we first choose some fix
magnetizationmX. We are primarily interested in surfaces
fixed magnetization that lie in the interface, typified bymX

50. Second, we definel in the same way that FJ do. How
ever, we do not impose the constraint of fixedl , but leavel
to be determined self-consistently by~in general! a different
constraint. Thisfreedom of choice of constraintis a key tool
hitherto not utilized. The constraints we impose are of
form, with q a non-negative integer,

E
0

ẑ~y!Fm~y,z!2mX

mb`2mX Gq

dz5G~q!~y! ~4!

for some fixedG (q). The upper limitẑ(y) is defined by the
crossing criterion so that, for fixedy,

ẑ[m21~mX!. ~5!

We thus obtain a family of constraints parametrized by
exponentq.

We define the collective coordinatel (y;G (q)) as the value
of ẑ(y) that minimizes the free energy subject to the co
straint~4!. First considerq50. In this case we see from Eq
~4! that our procedure simply corresponds to fixingẑ(y),
which then equalsl (y). Consequently, we recover thelocal
crossing criterion of FJ. Forq51 our constraint is akin to
the integral constraint on the adsorption, while for q→` we
reproduce features of the fixed-wall constraint as emplo
in @3,4# ~see further!.

For brevity we restrict our attention to planar magnetiz
tion profiles, mp(z;G (q)) say, which for convenience w
write asm(z). These profiles are associated with a fixedG (q)

and we now describe how to obtain the profile that solves
free-energy minimization exactly. For later use we note t
after minimization, each choiceG (q) corresponds to a uniqu
value of l[ l (q). We do not further consider the caseq50,
which has been extensively treated in@5#. It follows from Eq.
~4! that the Euler-Lagrange equation found from minimizi
the free energy subject to the generalized constraint is

K
d2m

dz2 5f8~m!1Q~ l 2z!lq
@m~z!2mX#q21

@mb`2mX#q , ~6!

where Q is the Heaviside step function,l is a Lagrange
multiplier, and primes always denote differentiation with r
spect to argument. The first integral of Eq.~6! is

K

2 S dm

dz D 2

5Df~m!1Q~ l 2z!S lFm~z!2mX

mb`2mX Gq

1ED ,

~7!

where Df(m)5f(m)2f(ma`) and E is an integration
constant. Note that there is no integration constant in
regionz. l by virtue of the bulk conditionm(z)→ma` for
z→`.

Extremization with respect to variations of the wall val
m1 leads to the familiarboundary condition K(dm/dz)uz50
52h12gm1 . It is important to consider also the variatio
of the crossing pointẑ, which leads to the extremality con
dition that the quantityG(z), defined by
s
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G~z![
K

2 S dm

dz D 2

2Df„m~z!…2lFm~z!2mX

mb`2mX Gq

,

be continuousat z5 l . This corresponds to a Weierstras
Erdmann condition@9#. Utilizing the continuity ofm(z) and
G(z) at z5 l identifies the integration constantE50. Thus
we observe from Eq.~7! that the constrained profile wil
have a continuous first derivative forq>1, in contrast to the
q50 criterion. It follows from Eq.~6! and its derivatives
that, providedf is suitably smooth,m(z)PCq. That is,m(z)
and its firstq derivatives are continuous everywhere, but t
(q11)st derivative has a jump atz5 l . Consequently, the
criterion we have introduced provides a mechanism
smooth, in a controlled manner, the kink enforced by
local crossing criterion.

Furthermore, theq→` limit of the family is reminiscent
of, but not identical to, the fixed-m1 criterion discussed pre
viously @3,4#. To see this consider some fixed wall valu
M1,mb` say. One can derive the corresponding magnet
tion profile simply by requiring thatm(z50)5M1 and
m(z→`)→ma` . The resulting profileM (z) crossesmX at
some locationl . Now for a givenq we choose in our con-
straint~4! precisely theG (q) that ensuresl (q)5 l . Forz. l the
profiles m(z;G (q)) and M (z) are identical, while for 0,z
, l one can consider a Taylor expansion ofm(z;G (q)) about
l . From the discussion above we see that this series
differ from that ofM (z) only afterq11 terms. Thus, in the
limit q→` the regular parts of the two functions have ide
tical Taylor series and we verified numerically~see Fig. 1!
that they coincide at all points including at the wall. How
ever,m(z;G (q)) andM (z) have different first derivativesat
the wall since, in general,M (z) does not satisfy the bound
ary condition. Thus theq→` limit leads to profiles that are

FIG. 1. Comparison of constrained order-parameter profi
m(z) for q50, 1, 10, and̀ . We have takenmb`52ma`50.2,
f5(m2mb`)2(m2ma`)2, h1'0.68A2Kmb`

2 , and g50. For
clarity, the value of the constraintG (q) is chosen so that for eachq
the same crossing pointl 54A2K is obtained. The profile forq
50 displays a discontinuous derivative atm5mX50. In general,
mPCq, with a discontinuous (q11)st derivative atz5 l . The
boundary condition atz50 is satisfied for allfinite q ~see the text!.
For q→` the profile becomes coincident with the functionm(z)
5ma` tanh@mb`A2/K(z2 l )#, which solves the fixed-wall-value
problem.
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5736 56C. J. BOULTER AND J. O. INDEKEU
singular atz50, but smoothly converge to those obtain
with the fixed-wall-value constraint for allz.0.

Concerning the binding potentialW( l ), we remark that
the constraint of fixedG (q) naturally leads to a potential as
function of this variable, i.e.,W̃(G (q)). This potential gives
the free-energy minimum for fixedG (q). Since the exact so
lution of the free-energy minimization provides a uniq
value of l for a given value ofG (q), the potentialW̃(G (q))
leads to an equivalent potentialW(q)( l ). Note that this func-
tion does not give the free-energy minimum for fixedl , ex-
cept for q50. In fact, for a givenl , the valuesW(q)( l ) in-
crease asq is increased.~For simplicity, we will henceforth
write W in place ofW(q).!

One application of our smoothing procedure is to test
fundamental predictions of theq50 criterion. Any physics
that is not common with, for example, the choiceq51 can-
not be considered robust but rather an artifact of impos
the constraint. First note that because all constraints in
family employ the crossing criterionm(z5 l )5mX, the ex-
pressions of FJ forW( l ) andS( l ) are valid for the effective
Hamiltonian derived with anyq. In particular, up to
l -independent terms

W~ l !5E
0

` H K

2 S ]m

]z D 2

1Df~m!J dz1f1~m1! ~8!

and

S~ l !5KE
0

`S ]m

] l D 2

dz, ~9!

where in each case only planar profiles are involved. Exp
expressions for the binding potential and stiffness coeffic
can be calculated within the double-parabola~DP! model
used by FJ. Specifically, we consider the caseq51 since the
DP model automatically forces a singularity in the seco
derivative of the magnetization profile, due to a discontinu
in f08(m) @see Eq.~6!# countering the advantage of ext
smoothness associated with largerq. We further choose
mX50, allowing a direct comparison with existingq50 re-
sults. The DP model, which assumes thatf0(m) can be rep-
resented in a piecewise parabolic fashion, allows the ca
lation of ~planar! magnetization profilesm(z; l ) by solving
Eq. ~6! in the regionsz. l and z, l . Expressions forW( l )
and S( l ) are found from substitutingm(z; l ) into Eqs. ~8!
and ~9!, respectively.

Here we present a summary of our results in the lim
l→`. For W( l ) we find

W~ l !5h̄l 1 (
m51

`

(
n50

m

wmn~k l !ne2mk l , ~10!

where2h̄}h. The leading-order coefficientswmn are

w10~T,h,h1 ,g!52Kkmb`t1O~h!,
~11!

w20~T,h,h1 ,g!5KkGmb`
2 1O~h,t2!,

w115O~h!, w215O~h,t2!, w2250,
e

g
e

it
t

d
y

u-

t

while t5(h11gmb`)/(Kk2g)}T2TW and 0,G5(g
1Kk)/(g2Kk),1. These results agree precisely with tho
found for q50 in this model up to terms ofO(h,t2). The
key feature is that~for h→02! the leading termw10 van-
ishes at mean-field wetting criticality, whilew20 remains
positive. We also note the presence of nonpure expone
contributions inW( l ) already at the level of the DP approx
mation.

For the stiffness coefficient we find a similar expansio

S~ l !5S`1 (
m51

`

(
n50

m

smn~k l !ne2mk l , ~12!

whereS` is as defined earlier. The coefficientssmn are

s10~T,h,h1 ,g!52Kkmb`t1O~h!,
~13!

s20~T,h,h1 ,g!5Kkmb`
2 ~G2110G21!/21O~h,t!,

s21522KkGmb`
2 1O~h,t!, s1150, s2250.

Again these results are in close agreement with theq50
analysis, with the two leading termss10 and s21 matching
identically up toO(h). Of particular importance is the fac
that at critical wetting the dominant contribution aris
throughs21, which is negative and of order unity. This ter
leads to the so-called stiffness instability mechanism thro
which, under renormalization, a~bare! critical wetting tran-
sition may be driven weakly first order@5#. That is, under
renormalization the presence of a term ofO( le22k l) in the
stiffness expansion is found to destabilize the critical wett
transition. A recent nonlinear renormalization-group stu
strongly suggests that in three dimensions the transitiois
driven weakly first order for values of the stiffness streng
s21 predicted from theq50 analysis@10#. The above obser-
vation thats21 remains unchanged forq51 implies that the
same prediction of a fluctuation-induced first-order transit
is appropriate with this criterion.

More generally, the existence of nonpure exponential c
tributions to the stiffness has been shown to be a vital ing
dient in obtaining a thermodynamically consistent theory
correlation functions@11,6#. That analysis was based upo
theq50 criterion, but from the above we may anticipate th
identical thermodynamically consistent results would
found using any member of our family of constraints. W
conclude by showing that this is indeed the case.

An important success of theq50 criterion has been the
ability to rederive known mean-field expressions for t
order-parameter correlation function G(r1 ,r2)
5^m(r1)m(r2)&c . From translational invariance this de
pends only on the normal distancesz1 and z2 and relative
parallel separationuy12u. Consequently, it is convenient t
define the transverse structure factor and its moment ex
sion

G̃~z1 ,z2 ;Q!5*dy12e
iQy12G~r1 ,r2!5(n50

` G̃2n~z1 ,z2!Q2n.

For the discussion presented here we restrict our attentio
the zeroth momentG̃0(z,z). The mean-field expression fo
G̃0(z0 ,z0) can be derived from an interfacial Hamiltonia
defined through aq50 crossing constraint provided the re
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56 5737SYSTEMATIC SMOOTHING OF CONSTRAINED . . .
erence valuemX is chosen such thatmX5m̌(z5z0), where
m̌(z) is the equilibrium magnetization profile found from
minimizing the bulk Hamiltonian with no constraint onl
@11#. The result is

G̃0„z0 ,z0 ;mX5m̌~z0!…5
m̌8~z5z0!2

W9~ l 5z0 ;mX!
, ~14!

where we have highlighted the implicitmX dependence. The
fundamental reason why atq50 this expression recovers th
known result is that for the choice ofl involved (l 5z0) the
planar magnetization profile is identically the equilibriu
profile m̌ ~which, recall, is everywhere smooth!.

For q.0 a similar derivation leading to the formal ex
pression~14! holds. Indeed, if we denote the equilibriu
position of the surface of fixed magnetizationmX by ľ and

define Ǧ5*0
ľ @m̌(z)2mX#q/@mb`2mX#qdz, then imposing

the choiceG (q)5Ǧ must, by consistency, yield the equilib
rium profile, i.e.,mp(z;Ǧ)5m̌(z). As a result, provided we
again make the local choice for the reference magnetiza
mX5m̌(z0), the contribution of the binding potential t
G̃0(z0 ,z0) is only dependent uponm̌(z). In fact, in each case
the appropriate constrained profile that is used to calcu
the zeroth moment is exactly the equilibrium profile. Sin
the definition~8! for the binding potential has no explicitq
dependence it follows that the local curvatureW9( l
5z0 ;mX) is independent ofq. HenceG̃0(z0 ,z0) is correctly
derived via the interface Hamiltonian approachwith any
choice of q. Similar considerations apply to the higher m
ments ofG̃.

In conclusion, we have shown that the use of integ
constraints within the crossing criterionm(z5 l )5mX allows
us to obtain order-parameter profiles of any desired smo
ness. The key consideration is to split the crossing criter
into two steps. The first is thedefinitionof l , given fixedmX.
The second is thechoice of constraintthat determinesl self-
e

.

.

n

te

l

h-
n

consistently. This constraint need not be that of fixingl , but
may be nonlocal. This freedom allows us to obtain a o
parameter family of soluble constraints.

As an application we have verified that the stiffness ins
bility mechanism and the correlation function reconstruct
scheme, previously derived using one particular constr
(q50), are robust under a change of constraint from loca
integral type.

The family of constraints provides a scheme in which t
local constraint of FJ (q50), the integral constraintrelated
to fixed adsorption (q51), and the constraintreminiscent of
the traditional approach of Bre´zin et al. and Lipowskyet al.
(q→`) are brought together. From a laboratory viewpoin
is satisfactory that the adsorption is now involved in t
framework of a soluble constraint. It is interesting that
preference for working withdifferentiable profiles can be
met by the use of this constraint (q51). We remark that for
q51 the approach of Bukmanet al. @8# is reproduced for the
special choicemX5ma` @12#. If, with this choice ofmX, we
furthermore take the limitẑ(y)→` in the integral in Eq.~4!,
we recover the insoluble constraint of fixed adsorption.

In practice, for smoothing the singularity in the interfa
arising from the local crossing criterionq50 it is sufficient
to work with q51 or 2 since already forq51 the profile
appears smooth to the eye. On the other hand, large valu
q are also interesting because they can be employed
smooth theq5` singularity at the wall. Therefore, the high
q members of the family provide a means of reconciling t
profiles of @3,4# with the boundary condition at the wall.
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